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Abstract 
We compare recursive and linear approaches to force-aligned 
data from Matukar Panau, an endangered language of Papua 
New Guinea. Data were force aligned with the train/align 
procedure in the Montreal Forced Aligner. Using manual 
alignments produced by a trained phonetician as a benchmark, 
the recursive approach was found to outperform the linear 
approach. The recursive approach produced alignments that 
overlapped more with those made by human coders, and 
resulted in fewer fluctuations in both Overlap Rate and Error 
Rate. We conclude that a recursive approach enhances the 
quality of automated alignment of languages lacking a pre-
existing acoustic model. 

 
Index Terms: forced alignment, accuracy, robustness, 
recursion, minority language 

1.   Introduction 
Forced alignment is increasingly prevalent in phonetic 
research, as it dramatically increases the speed of achieving 
analysable data, and therefore the number of tokens that can 
be examined phonetically [1, 2]. Forced alignment has 
primarily been applied to major world languages with fully 
established acoustic models (in particular, English) [3, 4]. 
Thus, there exists a significant gap between the forced 
alignment resources available for minority languages, and 
those available for major languages. Minority languages have 
been force aligned using acoustic models from major 
languages, with varying success [5-8]. This approach is less 
than ideal because of the reliance it places on matching 
phonemic inventories and orthographic systems of often 
completely unrelated languages. We argue that current forced-
alignment programs with a train/align procedure offer the 
means to effectively align data from languages which lack 
acoustic models, and, by applying a recursive approach, this is 
so even in the absence of large amounts of speech data with 
which to work. 

A number of factors that affect the accuracy of forced 
alignment have been presented in the literature to date. Focus 
has been placed on best practices for addressing transcription 
errors [9], the impact of long pauses and noisy environments 
[10], as well as the optimal number of speakers and type of 
data for successful alignment [3]. Previous studies have also 
found that alignment accuracy tends to reach a ceiling, after 
which point additional data does not significantly improve the 
alignment. One study on spontaneous spoken English found 
that this ceiling was reached at five minutes of transcribed 
speech [3]; another, on read French data, exhibited a ceiling 
effect at two minutes [11]. Instead of increasing alignment 

quality, in some cases additional data was associated with in 
poorer alignment accuracy [3]. 

One of the more powerful tools in forced alignment is the 
train/align method. While some forced alignment works on the 
basis of a pre-existing acoustic model, with the train/align 
method, an acoustic model is created on the basis of the data 
input to the program, and that model is then applied to the 
forced alignment of the same input data [11]. This procedure 
has been successfully used to force align minority languages 
without established acoustic models [12, 13]. 

In working with minority, and under-resourced, languages, 
there may be limited data available, and thus maximal use 
must be made of the data that is available in order to build an 
acoustic model from scratch. The standard treatment of force-
aligned data follows a linear approach, whereby the data is 
examined only once prior to creating a model. In contrast, in a 
recursive approach, the data is examined several times in 
different stages, and at every new stage, the algorithm learns 
from the previous stage and adapts accordingly [10]. It is 
therefore particularly valuable for working with small 
datasets. 

This paper compares the application of a linear vs. 
recursive approach to force-aligned data from Matukar Panau, 
a minority language of Papua New Guinea, with no pre-
existing acoustic model and with a moderately sized speech 
corpus [14, 15]. We demonstrate that the recursive approach 
yields very high quality alignment, and suggest that applying a 
recursive approach facilitates high quality forced alignments 
of under-described languages. 

2.  Methodology 
2.1. Montreal Forced Aligner 

The aligner chosen for this study was the Montreal Forced 
Aligner (MFA) [4]. MFA has been demonstrated to be more 
accurate than FAVE [16], MAUS [17] and Prosody lab-
Aligner [18], and marginally more accurate than the train/align 
procedure in LaBB-CAT [19]. (See [20] for a comparison of 
these aligners.) One key difference is that these other forced 
aligners use the HTK toolkit, while MFA uses the Kaldi 
toolkit, which employs triphone acoustic models to better 
capture variability in phone realisations. Another is that MFA 
(like LaBB-CAT) allows for the application of the train/align 
method, facilitating extension to languages lacking an acoustic 
model. 

2.2. Matukar Panau Speech Data 

Matukar Panau is an endangered Oceanic language spoken by 
around 300 people in Madang Province, Papua New Guinea, 
in the village Matukar and hamlet Surumarang. 
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Documentation for this language is ongoing [14, 15]. It is an 
agglutinating, non-tonal language with 17 consonants, a small 
vowel inventory, and a fairly transparent orthography. There is 
no existing acoustic model of the language. 

The data for this study come from a corpus of sixty short 
recordings of monologic narratives produced by 36 native 
speakers of Matukar Panau. The narratives were transcribed 
by a trained linguist in conjunction with six trained, semi-
speakers of Matukar Panau (native speakers of Tok Pisin who 
have familiarity with Matukar Panau). Transcription was done 
at the utterance level, using a phonemically transparent 
orthography. For this study, we worked with 3.75 hours (or 
225 minutes) of transcribed speech. We built a dictionary to 
map the 2,468 word types that occur in this sub-corpus to their 
phonemic representations, and force aligned the audio files 
using the train/align procedure in MFA. Data were then 
prepared following both a recursive and linear approach, as 
described below. 

2.3. Data Recursion 

How much data is required for effective forced alignment 
when working with a language with no acoustic model? To 
test the quality of forced alignment with different quantities of 
data, we needed to create subsets of the data of different 
lengths. To control for speaker effects, we had to include 
multiple speakers in each subset. Thus, a script was written to 
create a TextGrid file in Praat [21] which separated all files 
into increments of 30 seconds. The starting point was one 
minute from each of four files representing four speakers. 
From there, we created five-minute iterations by drawing 30-
second increments from each file, until the file’s duration was 
exhausted, at which point we drew a 30-second increment 
from a new file. We increased the data being aligned by five-
minute iterations, until we reached the maximum duration of 
transcribed speech (225 minutes). The 30-second increments 
ensure that speakers were equally represented at each five-
minute iteration, controlling for speaker effects at each step. 
The five-minute iterations allow for the quality of the forced 
alignment with different amounts of data to be compared, to 
identify the point at which alignment quality is optimised. 
This process resulted in a mean of 487 word tokens and 2,444 
segments per five-minute iteration. 

Two datasets were prepared from the forced alignment 
output: a linear dataset and a recursive dataset. Figure 1 
provides a representation of the difference between the two. 
Linear processing is the default for forced alignment. To 
prepare the linear dataset for this study, the force-aligned 
boundaries were reset at each five-minute iteration. In 
contrast, the force-aligned boundaries for the recursive dataset 
were adjusted. That is, for each iteration, the alignment was 
recalculated based on the information from the current 
iteration and from previous iterations, utilising an algorithm 
that was written for this process. This methodology is adapted 
from [10], which utilised a recursive algorithm to improve 
forced alignment in long audio segments. A recursive 
algorithm works by inspecting the data multiple times; at 
every new iteration, new information is added, re-evaluated, 
fed back into the existing information from previous iterations, 
and then applied at the next iteration. This output then serves 
as the basis for analysis. 

Figure 1 Alignment process according to 
         linear and recursive datasets 

3.  Measures of alignment quality 
The standard for determining the quality of forced alignment 
is comparison with a human benchmark. One method 
available for doing this is a comparison between boundaries 
placed by forced alignment vs. boundaries placed by a trained 
phonetician [3, 22]. Following the same protocol as that 
applied in previous work, we selected two speakers (one male 
and one female), and manually corrected the automatic 
alignment of the first 60 seconds of the file of each speaker. 
These 549 segments (261 consonants and 288 vowels) serve as 
the benchmark against which the automatic alignments are 
compared. 

Two quality measurements are employed in this study: 
accuracy and robustness [cf., 23]. Accuracy was 
operationalized as the time difference between the placement 
of a boundary as the result of forced alignment vs. the human 
benchmark. Robustness is the rate of alignment error based on 
a specified boundary threshold, here set at 20 ms, following 
[3]. Any force-aligned boundary placed greater than 20 ms 
from the human benchmark is classified as an alignment error. 

These measurements provide different indications of the 
quality of the forced alignment. An alignment may have high 
accuracy but not be robust if there are a large number of 
alignments that occur just beyond the 20 ms threshold, but 
close to that threshold. On the other hand, an alignment can 
have robust alignments with low accuracy if there are few 
alignments beyond 20 ms, but those that are beyond 20 ms are 
at a high degree of distance from the benchmark. Together, 
these measures provide a strong indication of the overall 
quality of the resulting alignments. 

3.1. Accuracy Measurement 

For accuracy, we calculated Overlap Rate (OvR) [3, 23], that 
is, the proportion of overlap between the intervals established 
by the human coder and the intervals established by the forced 
aligner. Greater overlap is associated with greater accuracy. 
The time representation is shown in Figure 2. 

 

  
Figure 2: Representation of Overlap Rate 

Common_Dur is the time shared by the interval created by 
the human coder (Dur_hum), and that created automatically, 
by the forced aligner (Dur_auto). This is measured as a 



 
 
 

proportion of the duration from the earliest onset and latest 
offset boundary of the two intervals (Dur_max). The Overlap 
Rate was calculated for both linear and recursive datasets. 

3.2. Robustness Measurement 

For robustness, we are interested in the proportion of 
boundaries that lie beyond a pre-determined threshold, here 20 
ms. Following [13], this was calculated on the basis of the 
difference between the midpoint of the manually created 
interval and the force-aligned interval. Figure 3 shows a 
hypothetical midpoint of an interval produced by a human 
coder, and two hypothetical midpoints from distinct forced 
alignments. If a force-aligned midpoint falls within 20 ms of a 
manual midpoint (as for (a)), it is considered a non-error; if it 
is at a greater distance (as for (b)), it is considered an error. 
The Error Rate is the ratio of total number of errors to non-
errors. As a further measure of robustness, we calculated the 
mean distance from the manual midpoint of the error tokens. 
Higher mean distances correspond to less robust tokens, thus 
less reliable alignments. The two measures of robustness were 
calculated for both linear and recursive datasets. 

 

 
Figure 3: Representation of errors, 
              using a 20 ms threshold 

4.  Results 
4.1. Accuracy 

Figure 4 compares the Overlap Rate for the linear and 
recursive datasets across iterations for the two speakers who 
were manually aligned. The greater accuracy for the recursive 
dataset, captured with the solid line, can be seen in three ways 
(all of which hold for each speaker). 

First, the overall mean Overlap Rate is higher in the 
recursive than the linear dataset. Second, the recursive dataset 
exhibits fewer fluctuations than the linear dataset, suggesting 
that a recursive approach smooths out major alignment errors. 
And third, in the recursive dataset, there is a marked increase 
in Overlap Rate up to 35 minutes of data; beyond this point, 
the increase is more gradual. In comparison, the linear dataset 
retains significant fluctuations throughout, though they 
become less marked from approximately 125 minutes. Thus, 
the recursive dataset improves more rapidly, follows a steadier 
trajectory, and overlaps more with alignments placed by a 
human coder than the linear dataset. 

Evidence of the quality of the alignment can be seen by 
comparing these results with the findings of [3] for English. 
The Overlap Rate of 0.67 attained at 35 mins in the recursive 
dataset here is at the upper end of the range reported in [3]; but 
in [3], this was attained earlier, with just five minutes of data. 

4.2. Robustness 

The overall Error Rate, that is, the proportion of midpoints 
determined automatically that occurred at a distance of greater 

than 20 ms from the human benchmark, was very similar 
across the two approaches (recursive dataset = 21.5%, linear 
dataset = 23.2%). Overall mean distance from the human 
benchmark for tokens classified as errors was also similar 
(recursive dataset = 93.6 ms, linear dataset = 94.9 ms). Thus, 
according to this measure of robustness, the recursive dataset 
produces only marginally better results. 

However, mean distances across data iterations differ. 
Figure 5 shows the mean distance from the benchmark across 
data iterations for tokens classified as errors. Here we see that, 
while the recursive dataset exhibits a steadier trajectory 
throughout, the linear approach is characterized by heavy 
fluctuation, with pronounced differences between peaks and 
troughs. As with Overlap Rate, the recursive approach seems 
to be able to soften the impact of errors more efficiently than 
the linear approach. 

We also see here that both linear and recursive datasets 
show stabilisation at approximately 35 minutes (a similar 
point at which improvement in accuracy according to Overlap 
Rate begins to diminish). And both datasets show a decrease 
in robustness at the latter stages of data iteration—the linear 
dataset exhibits striking variability, and the recursive dataset 
shows a gradual increase in mean distance. One possible 
explanation is that the greater number of speakers included at 
these latter stages may result in more variability, and we leave 
this for future exploration. 
 

 
Figure 4: Overlap Rate across data iterations: 

    Linear and Recursive datasets 

 
Figure 5: Mean distance of error tokens across data 

         iterations: Linear and Recursive datasets 



 
 
 

5.  Discussion 
In this study, we applied a recursive approach to forced 
aligned data from Matukar Panau, a minority language of 
Papua New Guinea lacking an acoustic model. To do this, we 
utilised the train/align procedure in MFA, and aligned the 
same data at different iterations, from 5 to 225 minutes. We 
then applied two approaches to prepare data for analysis: a 
linear approach, where alignment values are reset at each 
iteration, and a recursive approach, where alignment values 
are adjusted based on previous iterations. Results indicate that 
a recursive approach outperforms a traditional linear 
approach—forced alignments derived via recursion were more 
accurate, with a higher rate of overlap between manually and 
automatically placed boundaries. The recursive approach was 
also more robust than the linear approach in the sense that it 
was less susceptible to major alignment errors. This suggests 
that the algorithm learns as more data is processed, in line 
with observations that adjustments early on in alignment 
improve alignment in later stages [10]. In this way, the 
recursive approach may be able to protect alignment in 
sections of audio files (or whole audio files) that prove 
challenging to aligners. As the recursive approach employs an 
algorithm that is self-correcting, these mistakes can be 
adjusted for as the data is processed; the algorithm learns from 
these examples and this ultimately improves the alignment 
later in the data stream.  

6.  Conclusions 
The recursive approach to the force-aligned data outperforms 
traditional linear implementations, and yields highly accurate 
alignment, even from a relatively small dataset—here, 35 
minutes of transcribed speech was sufficient to achieve high 
quality alignment. This method expands the potential for 
large-scale phonetic and sociophonetic studies for under-
resourced minority languages, and is a very promising step 
towards making available to minority languages tools that to 
date have been primarily utilised for work on major world 
languages. Future studies on languages of different types will 
further advance methods and the ability to obtain the best 
results for automated phonetic alignment.  
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